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The problems dealt with involve the flow of an electroconductive medium 
through a plane channel or duct in the presence of a magnetic field with 
various boundary conditions. The walls of the central part of the duct 

are electrodes and the rest of the walls are insulating. Solutions are 
obtained both for the case of a constant magnetic field and an arbitrary 
law of transverse variation in velocity, and also for a constant velocity 

of flow with arbitrary variation of magnetic field along the electrodes. 

1. Fluid of constant electrical conductivity o flows through a channel 

(Fig. 1) with plane walls y = f 6, one section of which, 1, is insulated; 

other sections, 2, symmetrical with respect to the channel axis, are 
electrodes y = f 6, 9/ < x Q b,, each vth pair of which is connected 
through external load R,(v = 1, . . . n). Let the external magnetic field 
be B = (O,O, - B(x)), B(x) >, 0 perpen- 
dicular to the plane of flow, and de- 
pending only on the coordinate axis x. 
The interaction of the fluid flow and 

the magnetic field involves Ian 
electric power load N, = Jv2s. where 

J,, is the total load current. If the 
u 

magnetic Reynolds numbers are small _. 
(as is the case in many applications), 72\-2 ( 

the effect of the induced magnetic iR 
Py , 

JR”., 

field on the flow may be neglected 
and the distribution of current Fig. 1. 

density j and potential $I can be obtained from Ohm’s Law and the equa- 
tions of continuity 

-_qf+sxB), div j = 0 (1.1) 
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in which the magnetic field 
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is assumed to be known, 

To a first approximation, the stream.velocity v may be considered a 
known quantity from hydrodynamic considerations. Equations (I. l), then, 
represent a closed system for determining the currents and Potential. 
Assuming the velocity to have only a longitudinal component V, we can 
write down system (1.1) as follows: 

The function c$ should satisfy the following boundary conditions: 

V (2, & 8) = +rp, -- on the electrodes (f.3) 

@ -+ 
a?! 

on the insulators (1.4) 

The constants c& must be obtained by applying Ohm’s Law to the ex- 
ternal load 

2. We will now deal with gas flow through a channel with a constant 
magnetic field. Assume the velocity to be some arbitrary even function 
of y* Then, introducing the function u(x, y) through formula 

we obtain from the relations (1.2) 

First of all we assume that the upper and the lower walls are insulat- 
ing. The system (2.1) has a solution 

(2.2) 

In that case a 
channel, with the 
and lower walls 

separation of the electric charges takes pl.ace in the 
result that a potential builds up between the upper 

-9 
‘p (x, + 6) - qJ (5, - 6) = -!- B 

s 
Ydy = % 

c 
-4 

NOW suppose that the wall sections y = f 6, a,, $ z 6 b, become 
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electrodes. 

Because the walls are insulating at infinity the previous solution 

may be used. Thus 

cp (2, L 6) = *l/z 8, u (2, * 6) = 0 

for x + + 00 

Introduce the analytic function W(Z) = u + iv. At the electrodes the 

real part of this function is constant u(x f 6) = ~(1/2 8 - $,,V, = 

? uV (uV > 0, for the potential drops with internal load). On the insu- 

lators the imaginary part V(X, y) is constant. The jumps vV = v(b,, 6) 

Fig. 2. Fig. 3. 

- v(s, 8) in the function v(x, y) at the electrodes follow from Expres- 

sion (1.5): 

R,au, = 8 - 2u, (2.3) 

Thus the problem can be solved by conformal mapping of the regions 

- 6 < Im z < 6 onto the inside of a polygon in the m-plane whose sides 

are parallel to the coordinate axes, and the lengths of the sides are 

connected by relations (2.3); when v > 2. such a representation generally 

Yields a definite relationship between the loads s. 

As an example we study the problem of flow through a channel with two 

central electrodes* of length 2h connected through a load R. The cor- 

responding regions in the Z-, UP and t-planes are illustrated in Figs. 2 

and 3. The solution to the problem is given by the formulas 

* The problem of the spreading of the current in such a channel due to 
an applied external potential difference in the absence of a magnetic 
field is dealt with in [ 1 I. 
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The Potential of the upper electrode +I and total current across the 
load J are 

‘SRsa 
J= 

c673 
VI z 2 (2 + Rsa) ’ 2 -+ Rsa 

(2.5) 

The current density in the channel and the Joule dissipation p(x, y) 

per unit volume can be expressed thus: 

f ix = - f (z, Y) sin [& (PI + Pi7 - nFy)] , -“,- j, = f (z, ?J) cos [&+p2-- ~O-l$j 

B,,, = arg {I -/- cos (no -%I) exp no-l (X 3: h), sin (no-iy) exp nkl (z I- h)) (2.C) 

j (z, y) =y 
.n:; h.?. 

-_ 
2 l/2rS (2 + &or) K (li) 

----__ csp 2* . { I cash x6-1 (z -i_ 1) + cos nb ly] :< 

;,: :’ cash x8-l (z -- k,) -,L cos XI?-‘y])-“.“, Q (x9 Y) = o I” (x1 ?I) 

In Formulas (2.4) to (2.6) the quantity K(k) is a complete elliptic 

integral of the first type. Function a(X) increases monotonically with 

increase in the argument, whilst o(O) = 0, a(m) = 05. It is easy to de- 

monstrate the following: 

1. The function j,(x, y) is odd, the function j,(x, y) is even in its 

arguments. 

3. Within the region z > 0, 0 Q y < 6 the currents j, 2 0, j, < 0. 

Several streamlines are shown diagrammatically in Fig. ‘2. 

4. At the points y = -t 6, x = f h, the function W(Z) is no longer 
analytic. Therefore, for instance, the dissipation q(x. y) at those points 
is infinite. However, the overall characteristics, namely the current 

leaving through the electrode section adjacent to one of these points, 

and the dissipation in the neighborhood of these points when the dimen- 

sion of the corresponding electrode section and the radius of the region 

considered vanish, both tend to zero. The total dissipation in the channel 
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is finite. 

It is evident from Formulas (2.5) that the magnitude J of the current 
increases with increase in the electrode dimension, while the electrical 
conductivity decreases when the ex- 
ternal resistance increases (Fig. 4). 

In the case where k + =J, i.e. 
9 

-- -- when the channel walls are electrodes 
all along their length, the potential 
on the upper (lower) electrode, and 

0.8 

the current, are respectively 

cp (I, -to) = +, 3 = %R-1 0.4 

In this case there is no Joule 
loss in the channel. 

When x + 0, i.e. when the walls 0 08 1.6 z.4 

are insulating all along their length 
and have point conducting terminals Fig. 4. 

(exits) at r = 0, y = f 6. the potential at the terminals and the current 
obtained are zero. Over the rest of the wall surface the potential is 

‘p (2, f 6) = _ir f $7 

The current in the channel is zero, and the electric charge is 
separated. 

3. Now suppose that the magnetic field for c+, g z Q b,, v = 1, . . . , n 

may be expressed as an arbitrary function B= B,,(x). ByCay) = BVCb,,) = 0 
and vanishes outside the electrodes. We assume that the velocity of the 
medium is constant everywhere. The function +(I, y), therefore, will be 
harmonic and it is possible to construct an analytic function w = 4 + i& 
As the potential (I&X i 6) = f $,) is constant over the electrodes, while 
because of the condition 3~ 0 the imaginary part of the function w is 
constant on the insulation, the problem can again be solved bs conformal 
representation of the regions on the inside of a polygon in the w-plane 
with sides parallel to the coordinates, as in Section 2. The change, 
+V = $(a,,, 6) - r&b,,, 6) in the function sl/(x, y) on the electrodes, is 
related to the quantity 4, by condition (1.5) 

The potential vanishes at infinity. 
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Let us now deal with a channel with central electrodes of length 2h 
(Fig. 5). The corresponding region in the m-plane is shown in Fig. 6. 
The solution is given by the formulas 

t 
:RsG . 

\ 
dt 

i-a 

” = - (2 i Rsa) K (k) ;;’ 1/g _ p) (1 _ plz) ’ 
G=l-v ’ Bdz 

C s (3.1) 

-a 

The potential at the upper electrode 41 and the resulting current J 
are 

R5G 27G (plLI--- 2 + Rsr ’ 
JZ 

2 + R;a 
(3.2) 

and the currents jX and jy are expressible as 

f i, = z (2, y) sin -$ (Sr -i- fiz - 7~6-17~) 
L 1 

(3.3) 

‘t b, Y) = 
nR3G hn 

2 I/LI? (2 + Rsa) K (k) 
ew 2j x 

X { [ cash JC~-’ (z + A) + cos m?-'y] [ co& nd-‘(2 - h) + cos J-c~-‘~]}-“.‘~ 

In Formulas (3.1) to (3.3) the quantities PI, &, cz, k, K(k) and t 
are expressed in the same way as in Section 2. Assume the function B(Z) 
to be even and B(x) < B(0); it is easy to check the following: 

1) the function j,(x, y) is odd, whilst j,(x, y) is even; 

2) when x > A, 0 < y ~6, the current j, < 0 for x > 0, 0 ( y < 6; 
current j, 2 0; 

3) on the axis x = 0 the current j, > 0. 

It follows that for any value 0 < yl ( 6 a point ~(a,, yI). XI < x 
can be found for which j, = 0 while the streamlines have a horizontal 
tangent. The appearance of several streamlines is shown on Fig. 5. 

Fig. 5. Fig. 6. 

It is evident from Formulas (3.2) that the current across the external 
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load increases with increase in the conductivity of the medium and the 
magnitude of the field, but decreases when the resistance of the external 
load is increased. When the length of the electrodes is increased, keep- 
ing u, G, R constant, the current output is reduced, and, finally, when 
x + m no current appears in the external circuit. For high values of h, 
from (3.3) we have approximately 

At positions where the magnetic field is relatively strong, currents 
flow from the lower electrode to the upper one; they then flow along the 
electrodes and close the circuit through the remaining portion of the 
channel where the magnetic field is almost zero. 

In the other limiting case x + 0 the current and the potential at the 
terminals are 

J- Co, ql=;RoG 

On the remaining parts of the walls the potential is zero. In this 
case the magnetic field B(x) = G8 (x) (where 6(x) is a delta function). 

BIBLIOGRAPHY 

1. Tabaks, K. K. , Raschet elektricheskogo polia elektromagnitnogo nasosa 
postoiannogo toka (Calculation of the electric field in a d.c. 
electromagnetic pump). Uch. zap. Latv. Gos Un-ta, No. 21, 1958. 

Translated by V.H.B. 


